Edge Colouring and the Minimum Number of
Colours such that Every Complete Geometric Graph
Adonis Johnson
on n Vertices has an Edge Colouring such that Disjoint Edges get Distinct Colours.

Abstract

We will be edge coloring complete geometric graphs, looking to find the minimum number of colors such that every complete geometric graph on n Vertices has an edge colouring such that crossing edges and disjoint edges get distinct colours.

Introduction

A complete geometric graph can be defined by letting P be a set of n points in the plane with no three collinear. Draw a straight line-segment between each pair of points in P. We obtain the complete geometric graph with vertex set P, denoted by K_{P}.

Here is an example of complete geometric graphs K_{10} and K_{11}

K_{10} Complete Geometric Graph $\quad K_{11}$ Complete Geometric Graph

Disjoint Edges

Two edges K_{P} are disjoint if they do not intersect. Let $D(n)$ be the minimum number of colours for disjoint edges. Here, edges receiving the same colour must intersect. So each colour class is a Geometric Thrackle. Since there are point sets for which $\frac{n}{2}$ edges are Pairwise Disjoint, $D(n) \geq \frac{n}{2}$. So $D(n) \leq n-1$. The conjecture to go along with this definition is $D(n) \leq(1-\epsilon) n$ for some $\epsilon<0$.

Upper bound

In Nikita Chernega, Alexandr Polyanskii, and Rinat Sadykov's article on disjoint edges in geometric graphs, they show that for a geometric graph with n vertices and e edges there are at least $\frac{n}{2}\binom{2 e / n}{3}$ pairs of disjoint edges provided that $2 e \geq n$ and all the vertices of the graph are pointed. This result is what I based my research off of because with in this same article they also prove that if any edge of a geometric graph with n vertices is disjoint from at most m edges, then the number of edges of this graph does not exceed $n(\sqrt{1+8 m+3) / 4}$ pro vided that n is sufficiently large. Looking at these two results and the upper bound that was found by Bose et al, $A(n) \leq n-\sqrt{\frac{n}{12}}$ for pairwise crossing edges.

K_{3}

K_{4}

K_{3}

K_{4}

K_{3}

K_{4}

Results

Drawing all six graphs by hand most likely took away odds of making graphs with a better minimum. For all graphs drawn, , with the exception of K_{5} and K_{6} they stayed true to the definition, that being that since there are point sets for which $\frac{n}{2}$ edges are Pairwise Disjoint, $D(n) \geq \frac{n}{2}$. So $D(n) \leq n-1$. For K_{5} and K_{6}, they both use the same number of colors as the number of vertices that they have, if this is true for all graphs that have multiple of 5 and 6 numbers of vertices, in theory, there is a chance that they will also use the same amount of colors as they do vertices. With the math that was used for this research, a lower bound could not be found. We will consider this the beginning of a bigger research project.

References

[1] G. Araujo and A. Dumitrescu and F. Hurtado and M. Noy and J. Urrutia, On the chromatic number of some geometric type Kneser graphs, Computational Geometry 32, 59-69 (2005)
[2] Prosenjit Bose and Ferran Hurtado and Eduardo Rivera-Campo and David R. Wood, Partitions of complete geometric graphs into plane trees, Computational Geometry 34, 116-125 (2005)
[3] Alexandr Kostochka and Jan Kratochvíl, Covering and coloring polygon-circle graphs, Discrete Mathematics 163, 299-305 (1997)
4] Nikita Chernega and Alexandr Polyanskii and Rinat Sadykov, Disjoint edges in
geometric graphs geometric graphs

